7 posts categorized "M2M"

12/12/2014

Intel’s IoT Platform Extends Security Toward Edges

At a press and analyst event in San Francisco on December 9, Intel announced its “IoT Platform” reference model. The model is horizontal in scope, encompassing numerous technologies applicable to everything from edge devices to gateways to the cloud. In addition, it is intended to be a modular approach, such that Intel’s hardware and software components (including those from subsidiaries Wind River and McAfee) can be mixed with those of other vendors. For example, a customer could deploy its preferred gateway devices not limited to those based on Intel’s Moon Island design, while remaining compatible with Intel’s reference model. We won’t attempt to describe the entire Intel IoT Platform in this blog post, but we’ll focus on a couple of security aspects announced. (Readers can find the full Intel press release here.)

  Intel-McAfee Security Execs

Intel executives discuss IoT Platform security: (left to right) Lorie Wigle, VP of IoT Security Solutions; Steve Grobman, Intel Fellow and CTO for Security Platforms and Solutions; and Luis Blando, SVP of Intel Security Group [McAfee].

As part of the latest announcement, McAfee’s ePolicy Orchestrator (ePO) is being extended into IoT gateways. ePO is software for security management, enabling centralized deployment and control of security policies, as well as monitoring of endpoint security status. Previously, ePO was intended for enterprise IT networks, but the announcement means that it can now encompass a much wider range of industrial and commercial IoT networks. In VDC’s opinion, this could help ease integration between IT and OT (operational technology) departments when transitioning standalone OT systems into IoT systems. OT could maintain functional control over the gateways and edge devices, while IT institutes improved access control between the gateways and enterprise network assets.

A second notable security announcement was that Intel Security will now license its Enhanced Privacy Identity (EPID) technology to other silicon vendors. EPID is a form of remote anonymous attestation using asymmetric (public key and private key) cryptography, through which central systems can confirm the integrity and authentication credentials of remote devices, without those devices having to reveal their identities or those of their owners. (One common use for anonymous attestation is digital rights management for content protection.) Anonymous attestation requires security hardware, such as a CPU with a Trusted Platform Module (TPM) or Trusted Execution Environment (TEE), for which Intel of course is a prime supplier.

EPID can create groups of devices, where a single public key can work with multiple private keys, i.e. one assigned to each device within the group. The mathematics behind EPID is complex, but for those interested, we suggest checking out the article, “Enhanced Privacy ID: A Remote Anonymous Attestation Scheme for Hardware Devices,” by Intel’s Ernie Brickell and Jiangtao Li (Intel Technology Journal, Volume 13, Issue 2, 2009, pp. 96-111). The chart below from that article summarizes how EPID differs from other attestation technologies, including Direct Anonymous Attestation (DAA).

  AttestationComparison
Chart source: Intel Technology Journal

Intel has not yet disclosed licensing terms for other chip makers to use EPID, and onerous or expensive terms could limit its acceptance. However, VDC believes that EPID could be applicable to many IoT scenarios where a central system needs to trust remote devices owned or operated by others. This type of function will become increasingly important as interested parties seek to extract shared or publicly provided data from private IoT devices.

Although numerous security technologies from many vendors are taking hold in the IoT, Intel is uniquely positioned in this market by virtue of its presence at both the network/system level (McAfee, Intel Server Systems) and the device level (Intel CPU hardware, Wind River software). Intel says, for example, that its existing McAfee Embedded Control software for application whitelisting is used by about 200 device manufacturers. Intel’s IoT Platform is the latest evidence that the company will remain a force to be reckoned with in IoT security.

11/14/2014

Automotive Privacy Protection Principles Don't Go Far Enough

The Association of Global Automakers and the Alliance of Automobile Manufacturers jointly announced on November 13, 2014 a set of voluntary “Consumer Privacy Protection Principles.” (See the press release here, and download the principles PDF document here.)

The document is written in quasi-legalese, but in essence, it’s a pledge by automakers, beginning with the 2017 model year, to among other things:  ConsumerPrivacyProtectionPrinciples

  • inform consumers about how data collected from their vehicles will be used
  • obtain “affirmative consent” for certain ways that data might be used
  • anonymize aspects of the data under some circumstances

VDC applauds the auto industry for recognizing the importance to consumers of privacy for data collected by electronic and digital technologies, which are growing by leaps and bounds in new vehicles. However, the principles don't go far enough in several respects:

Security – The document states that participating members must “implement reasonable measures to protect Covered Information against loss and unauthorized access or use,” then says that “reasonable measures include standard industry practices.” The word reasonable is too wishy-washy in this context, so those statements in the privacy principles don’t inspire confidence that automakers and their partners will go the extra mile for data security. (Why don't the principles say the members must "implement strong measures" to protect the data?) Without defining any minimum security measures or committing to create or adhere to an ISO standard, it comes across as a nice way of saying, “We’ll make a good effort at security, but don't expect us to guarantee the data won't get breached.” In addition, security issues apply for data within vehicles' internal systems, for data during communications from vehicles to infrastructure, and for the databases where the manufacturers will aggregate and store the data. Security policies should specify minimum requirements for how data will be secured at each of these levels, as well as how authorized third parties with data access will be required to secure the data.

Consent – The document states that automakers need to obtain consent to “a clear, meaningful, and prominent notice disclosing the collection, use, and sharing of Covered Information.” However, the document includes no provision for a vehicle owner to deny such consent or revoke it afterwards. Why would that be important? Because the consent form is likely to be presented to consumers among a stack of numerous papers that they sign in a perfunctory manner when buying a car. In addition, consent ideally would provide vehicle owners with the ability to agree or not to agree to each type of data collected, rather than any blanket statement of consent to collection of all data. We’ll see how this plays out when the first consent forms hit the market.

Data Access – The document says that consumers will have “reasonable means to review and correct Personal Subscriber Information.” Such information may include name, address, telephone number, email address, and even credit card number. It’s fine that automakers will give consumers the right to access the data that they themselves provided in the first place, but what the document misses entirely is the basic principle that consumers should have the right to access data produced by their own vehicles. Although this isn't a data privacy issue, it is a data rights issue that automakers need to address. In VDC’s opinion, vehicle owners should have, for example, the ability to take diagnostic data to an independent mechanic, rather than manufacturers only providing such data to its dealers or third parties that have paid to access it. And vehicle owners should have the ability to access geolocation data generated by their own vehicles. Certain types of data may need to be kept confidential, but the default should be to provide consumers access to data from their own vehicles unless there’s a legitimate safety reason not to make it available to the people whose vehicles generated it.

For further discussion of data rights issues related to the automotive industry and the Internet of Things, see the recent VDC View article entitled, Beyond "Who Owns the Data?" 

10/07/2014

How Significant is ARM’s mbed OS?

For microcontrollers (MCUs) used in embedded devices, intellectual property supplier ARM is the clear market leader. In a recent forecast for VDC Research’s report “The Global Market for Embedded Processors,” ARM-based MCUs accounted for more than half of the unit shipments using non-proprietary architectures in 2013 (see chart).

MCU Shipments by Architecture

The Cortex-M series is the main line of ARM MCUs, and is the most prevalent architecture used in embedded devices for the IoT. So when ARM announced on October 1 at the TechCon convention and trade show that the company would provide a free operating system—the mbed OS—for the M-series, it created considerable buzz in the industry, as well as some consternation and a bit of confusion.

ARM has been using the mbed name since 2005 for “maker”-style development platforms based on Cortex-M series MCUs, along with a large community of developers and an extensive software library. But the new announcement greatly expands the original mbed concept. The mbed name now encompasses not only the new operating system, but also: a cloud connectivity platform (mbed Device Server); a set of development tools (mbed Tools); and an ecosystem of partners (mbed Partners). Effectively, mbed has become a line of both products and services. ARM says that collectively, mbed will “accelerate Internet of Things deployment.” In this blog post, we’ll focus on the mbed operating system.

The embedded industry is already rife with many dozens of operating systems, ranging from bare bones to fully-featured. These include commercially-licensed binaries (closed source), commercially-licensed open source, free open source, as well as proprietary in-house OSs.

For resource-constrained embedded devices, the free open source offerings have been popular but limited in the extent of their development. Generally, commercially-licensed OSs are more professionally designed, thoroughly tested, and robust.

Several aspects of the mbed OS are noteworthy. First, ARM says that its free OS will be commercial grade. By offering it for free, the mbed OS will compete with some of the commercial embedded OSs already on the market. However, in his keynote speech at TechCon, ARM’s CTO Mike Muller emphasized that the mbed OS will not be a real time operating system (RTOS). Many IoT devices require the time-critical determinism of an RTOS, most notably in safety critical applications such as avionics, automotive systems, factory automation, and the like. The lack of real time functions will limit the breadth of applicability for mbed OS, and the extent to which it will compete with many of the commercial OSs on the market.

Second, ARM said its main intention of releasing the OS along with the mbed Device Server was to ease embedded software development to handle the many security concerns and communications protocols used in IoT, as those are often sticking points for developers not previously experienced with connected devices. Zach Shelby, Directory of Technical Marketing for the ARM’s IoT initiatives, noted that even devices running competing commercial OSs will be able to take advantage of mbed Device Server connectivity services. As Shelby described it, ARM isn’t trying to compete with OS vendors, the company is trying to ensure that IoT developers have adequate support to bring products to market in a timely manner.

Third, although ARM did not mention this in its press information Shelby told VDC that much of the mbed OS source code would be made available as open source. He also said that a few specific software components (such as some security modules) would be released only as binaries, i.e. closed source, which is why the company hasn’t been touting the OS as “open source.”

And fourth, ARM’s announcement only described the mbed OS as being for the M-series MCUs, but Shelby told us that partners will be able to adapt the open source code for ARM’s other series of processors. Indeed, at least one hardware vendor on the show floor was demonstrating a working version of the mbed OS on a Cortex A-series microprocessor. However, the higher performance A-series line is often used with more fully featured operating systems (e.g. Linux), and VDC doesn’t consider it to be a major target for the mbed OS.

All-in-all, VDC believes that the mbed OS will be significant for how it should speed up development for new entrants in the IoT. It probably won’t cause a major upheaval in the broad market for commercial embedded OSs, but a few of the OS vendors at the low end of the market are likely to be adversely impacted.

09/23/2014

VDC Research is Attending ARM TechCon 2014 in Santa Clara October 1-2

We are attending ARM TechCon 2014 in Santa Clata

ARM TechCon 2014 at the Santa Clara Convention Center is designed to facilitate collaborative design by connecting the hardware and software communities in one event. The event delivers a comprehensive forum created to ignite the development and optimization of future ARM-based embedded products. The conference includes about 75 intriguing sessions offering insight and education into new products, advanced development techniques, security issues, and much more. For more information about ARM TechCon 2014 and to register for the event, click here.

Contact us directly to schedule a meeting!

We would like to learn more about your company’s solutions and personal experiences, and we welcome the opportunity to meet attending vendors. VDC will be at the conference on Wednesday, October 1st and Thursday, October 2nd. Please contact us directly if you would like to arrange a meeting.

Contact Steve Hoffenberg, Director, M2M Embedded Software, VDC Research Group at shoffenberg@vdcresearch.com or 508.653.9000 x143.

About VDC Research

VDC has been covering the embedded systems market since 1994. To learn more about VDC’s coverage of Embedded Hardware & Platforms, check out our website here, and to see what other research and products are offered by VDC Research’s Embedded Hardware and Software practices, click here.

07/22/2014

VDC Research is attending Agile2014 in Orlando July 28-29

We are attending the Agile2014 conference in Orlando

Agile2014 is organized by the Agile Alliance, and it is intended to promote the principles of Agile and serve as an opportunity for all of the foremost experts and innovators in the field to come together. The conference boasts over 240 talks and workshops across 16 program tracks and over 1,800 attendees. For more information about Agile2014 and to register for the event, click here.

Make sure to attend the Industry Analyst Panel Discussion: Agile Trends and Future Directions on Tuesday, June 29 to see VDC’s Chris Rommel speak on the panel.

 

“The improved communication and expanded collaboration of Agile software development is helping early adopters discover new engineering synergies and increase their planning predictability. There is wider recognition for the effectiveness of more flexible and iterative strategies such as Agile and cross-engineering domain integration in addressing systems development challenges and rapidly responding to shifting customer needs or market expectations. Better management of design interdependencies through cross-domain integration can often increase operational efficiencies, resulting in cost savings. Use of these methods helps organizations further advance toward a continuous engineering approach, accelerating the pace of software content creation.”

-From André Girard, VDC Research

 

Contact us directly to schedule a meeting!

We would like to learn more about your company’s solutions and personal experiences, and we welcome the opportunity to meet attending vendors. VDC will be at the conference on Monday, June 28 and Tuesday, June 29. Please contact us directly f you would like to arrange a meeting.

Contact André Girard, Senior Analyst, M2M Embedded Technology Practice, VDC Research Group at agirard@vdcresearch.com or 508.653.9000 x153.

About VDC Research

VDC has been covering the embedded systems market since 1994 and the use of lifecycle management solutions since 2000. To learn more about VDC’s coverage of Software and System Lifecycle Management Tools, check out our website here, and to see what other research and products are offered by VDC Research’s Embedded Software & Tools practice, click here

 

-Patrick McGrath

Research Associate, VDC Research

06/18/2014

IoT Necessitates Changes in Both People and Technology

The requirements of the devices composing the Internet of Things are changing rapidly. The embedded market no longer consists of dedicated-purpose devices that may or may not be connected. Engineering organizations and deploying enterprises must now design scalable system topologies that can integrate new devices and adapt to the IoT’s evolution. While these next-generation systems are required to facilitate downstream device/node management as well as efficient upstream data transfer and analytics, they must also do so dynamically, allowing for more intelligence and flexibility in node role and workloads within sub-network architectures.

This recognition of a need for change in legacy technologies can already be seen in the shift in programming languages used by embedded engineers. In the past five years, the percentage of engineers using Java in the embedded market has more than doubled. Embedded industry stalwarts such as C will certainly maintain a substantial footprint going forward given the existing software assets and expertise at OEMs, but the results confirm that the market is rapidly looking to new and/or multi-language development to satisfy the requirements of next-generation projects.

Picture1

IoT Skill Set Gap Exacerbated by Existing Embedded Resource Gap

The existing embedded engineering resources unfortunately cannot keep pace with the IoT’s time-to-market and content creation requirements. Already this community has been struggling to meet the needs of pre-IoT development projects. Now, the industry is faced with a dynamic in which not only does it need more efficiency, but the existing population of embedded engineers also cannot scale organically to meet the new software content creation requirements. Today, there are just over 1 million embedded engineers globally, with only 35% of that community holding software engineering-specific primary roles. In order to adapt to the new IoT development demands and respond to this dearth of traditionally skilled resources, OEMs must look to new labor pools.

The global Java community, which is estimated to consist of approximately 9 million developers, offers an opportunity to draw upon an increasingly relevant labor and expertise pool. The value of traditional embedded engineering skill sets has already been partially devalued due to IoT system evolution. Now, knowledge of connectivity stacks and UI development often must be placed at a premium over skills such as footprint optimization. Furthermore, technology like Java’s virtual machines create an abstraction layer that can reduce hardware dependencies and the subsequent rework and optimization that would have previously required more traditional embedded firmware engineers. Despite the already rapid adoption of Java (by embedded standards), we believe that the impending blurring of the distinction between embedded and IT Java developers will reinforce the technology’s adoption and relevance going forward. The wide access to the existing ecosystem of Java tools and third-party software, combined with a growing embedded partner ecosystem spanning semiconductor/IP companies, tool, and hardware/system manufacturers will no doubt further reduce switching costs and any lingering reservations held within many embedded industries.

We will be exploring the business and technical impact of the IoT in a webcast tomorrow with Oracle:

Date: Thursday, June 19, 2014 

Time: 9:30 AM PDT, 12:30 PM EDT, 17:30 GMT

Join this webcast to learn about:

  • Driving both revenue opportunities and operational efficiencies for the IoT value chain
  • Leveraging Java to make devices more secure
  • How Java can help overcome resource gaps around intelligent connected devices
  • Suggestions on how to better manage fragmentation in embedded devices

Register here:

http://bit.ly/1oOuuS9

05/22/2014

VDC Research is Attending IBM Innovate2014 in Orlando

VDC Research will be attending Innovate2014, IBM’s Technical Summit in Orlando, June 1-3, 2014. IBM has planned an exciting agenda for the conference highlighting continuous engineering, DevOps, and Innovation.

We are also pleased to announce Chris Rommel, Executive Vice President of M2M Embedded Technology is a speaker for an important panel discussion, “Best Practices for Agile Product Development”, to be held Monday, June 2. We encourage you to attend.

Best Practices for Agile Product Development discussion overview:

Agile methods are popular and effective in software development for complex products. But, the application of agile principles to the broader product development process offers the prospect of even greater business value through improved productivity and predictability and better management of change. This session presents a panel of several experts to discuss the challenges of extending agile beyond software processes. These experts will also address key approaches that can maximize the value for product development organizations.

Haven't decided yet if you're attending IBM Innovate2014? Please check out the Innovate2014 website for more information on the conference program, scheduled speakers, as well as information on companies that will be exhibiting. We hope to see you there.